个人主页
http://www.civil.tsinghua.edu.cn/he/essay/344/792.html
教育背景
2008/08-2011/08 美国德克萨斯农业和工程大学 遥感水文 博士
2005/09-2008/07 中国科学院 遥感水文 硕士
2001/09-2005/07 清华大学 水利水电工程系 学士
工作履历
2017/7-至今 清华大学水利水电工程系,副教授,特别研究员
2014/12-2017/6 清华大学水利水电工程系,助理教授,特别研究员
2011/09-2014/11 美国德克萨斯大学奥斯汀分校地球科学学院,博士后
开设课程
1)现代遥感水文(英文,研究生)
2)遥感基本原理与方法(英文,本科生)
研究领域
重力卫星GRACE地下水储量变化模拟;
热红外遥感蒸散发模拟;
卫星雷达河流水位和流量模拟;
冰冻圈遥感和水文过程模拟;
卫星遥感的水文水资源应用;
水文和环境工程的熵理论。
科研项目
1) 国家自然科学基金“西南河流源区径流变化和适应性利用”重大研究计划重点项目,西南河流源区关键水文气象变量的多源遥感观测与数据集成(2016/01-2019/12),在研,主持;
2) 国家自然科学基金面上项目,重力卫星总储水量变化信号校正与回推重建方法研究与应用(2016/01-2019/12),在研,主持;
3) 国家自然科学基金“青藏高原地-气耦合系统变化及其全球气候效应”重大研究计划重点项目,青藏高原地-空多源降水和总储水量反演及其在区域水循环研究中的应用(2015/01-2018/12),在研,参加;
4) BP石油公司,遥感水文变量数据产品和地面数据在全球水资源现状中的应用(Analysis of Existing Satellite and Ground-based Data on the Status of Water Resources Globally)(2013/09-2014/11),结题,参加;
5) 美国宇航局,基于重力卫星GRACE的水资源管理:以美国高平原含水层为例(Application of GRACE Water Storage for water Resources Management: Case Study, High Plains Aquifer, US) (2012/09-2013/08),结题,参加;
6) 美国宇航局,基于地面观测和空载测量的半干旱区MODIS蒸散发监测和模拟:以美国高平原含水层为例(MODIS Evapotranspiration Monitoring Using Ground-Based and Airborne Measurements in a Semiarid Region)(2011/09-2012/08),结题,参加;
7) 美国地质调查局项目,德克萨斯州气候变化下水文干旱表征及其对水资源规划和管理的意义(Hydrological Drought Characterization for Texas under Climate Change, with Implications for Water Resources Planning and Management)(2010/09-2011/08),结题,参加;
8) 德克萨斯水资源研究所,基于MODIS数据和SEBAL模型的德克萨斯州蒸散发模拟(Derivation of Actual Evapotranspiration over Texas from SEBAL and MODIS data) (2009/06-2010/05),结题,主持。
学术兼职
Water Resources Research (IF = 4.361, 一区), 副主编
Journal of Hydrology (IF = 3.727, 一区);副主编
《中国科学:技术科学(英文版)》青年编委
奖励与荣誉
2019年美国地球物理联合会水文青年科学家奖
2019年李小文遥感学科青年奖
2017年 基金委“优秀青年基金”获得者;清华大学年度教学优秀奖
2014年 Geophysical Research Letters 优秀审稿人
2014年 美国德克萨斯大学奥斯汀分校作者成就奖
2013年 美国德克萨斯大学奥斯汀分校作者成就奖
2009-2011年 美国德克萨斯农业和工程大学研究助理一等奖学金
2009-2010年 美国德克萨斯水资源研究所Mills Scholarship Award
2008-2009年 美国德克萨斯农业和工程大学教学助理一等奖学金
2008-2009年 美国德克萨斯农业和工程大学Graduate Enhancement Funds
2008-2009年 美国德克萨斯农业和工程大学激励奖学金(Incentive Scholarship)
学术成果
[1] *Long, D., Pan, Y., Zhou, J., Chen, Y., Hou, X.Y., Hong, Y., Scanlon, B.R., & Longuevergne, L. (2017). Global analysis of spatiotemporal variability in merged total water storage changes using multiple GRACE products and global hydrological models. Remote Sensing of Environment, 192, 198-216
[2] *Long, D., Chen, X., Scanlon, B.R., Wada, Y., Hong, Y., Singh, V.P., Chen, Y., Wang, C., Han, Z., & Yang, W. (2016). Have GRACE satellites overestimated groundwater depletion in the Northwest India Aquifer? Scientific Reports, 6, 24398
[3] *Long, D., Longuevergne, L., & Scanlon, B.R. (2015a). Global analysis of approaches for deriving total water storage changes from GRACE satellites. Water Resources Research, 51, 2574-2594
[4] *Long, D., Yang, Y.T., Wada, Y., Hong, Y., Liang, W., Chen, Y.N., Yong, B., Hou, A.Z., Wei, J.F., & Chen, L. (2015b). Deriving scaling factors using a global hydrological model to restore GRACE total water storage changes for China's Yangtze River basin. Remote Sensing of Environment, 168, 177-193
[5] *Long, D., Longuevergne, L., & Scanlon, B.R. (2014a). Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resources Research, 50, 1131–1151
[6] *Long, D., Shen, Y.J., Sun, A.Y., Hong, Y., Longuevergne, L., Yang, Y.T., Li, B., & Chen, L. (2014b). Drought and flood monitoring for a large karst plateau in Southwest China using extended GRACE data. Remote Sensing of Environment, 145–160
[7] *Long, D., Scanlon, B.R., Longuevergne, L., Sun, A.-Y., Fernando, D.N., & Save, H. (2013). GRACE satellite monitoring of large depletion in water storage in response to the 2011 drought in Texas. Geophysical Research Letters, 40, 3395-3401
[8] *Long, D., & Singh, V.P. (2013a). Assessing the impact of end-member selection on the accuracy of satellite-based spatial variability models for actual evapotranspiration estimation. Water Resources Research, 49, 2601-2618
[9] *Long, D., & Singh, V.P. (2013b). An Entropy-Based Multispectral Image Classification Algorithm. Ieee Transactions on Geoscience and Remote Sensing, 51, 5225-5238
[10] *Long, D., Scanlon, B.R., Fernando, D.N., Meng, L., & Quiring, S.M. (2012a). Are Temperature and Precipitation Extremes Increasing over the U.S. High Plains? Earth Interactions, 16, 20
[11] *Long, D., Singh, V.P., & Scanlon, B.R. (2012b). Deriving theoretical boundaries to address scale dependencies of triangle models for evapotranspiration estimation. Journal of Geophysical Research-Atmospheres, 117
[12] *Long, D., & Singh, V.P. (2012a). A modified surface energy balance algorithm for land (M-SEBAL) based on a trapezoidal framework. Water Resources Research, 48
[13] *Long, D., & Singh, V.P. (2012b). A Two-source Trapezoid Model for Evapotranspiration (TTME) from satellite imagery. Remote Sensing of Environment, 121, 370-388
[14] *Long, D., Singh, V.P., & Li, Z.L. (2011). How sensitive is SEBAL to changes in input variables, domain size and satellite sensor? Journal of Geophysical Research-Atmospheres, 116
[15] *Long, D., Gao, Y.C., & Singh, V.P. (2010). Estimation of daily average net radiation from MODIS data and DEM over the Baiyangdian watershed in North China for clear sky days. Journal of Hydrology, 388, 217-233
[16] *Long, D., & Singh, V.P. (2010). Integration of the GG model with SEBAL to produce time series of evapotranspiration of high spatial resolution at watershed scales. Journal of Geophysical Research-Atmospheres, 115
[17] Chen, X., *Long, D., Hong, Y., Zeng, C., & Yan, D.H. (2017a). Improved modeling of snow and glacier melting by a progressive two-stage calibration strategy with GRACE and multisource data: How snow and glacier meltwater contributes to the runoff of the Upper Brahmaputra River basin? Water Resources Research, 53, 2431-2466
[18] Chen, X.N., *Long, D., Hong, Y., Liang, S.L., & Hou, A.Z. (2017b). Observed radiative cooling over the Tibetan Plateau for the past three decades driven by snow cover-induced surface albedo anomaly. Journal of Geophysical Research-Atmospheres, 122, 6170-6185
[19] Gao, Z., *Long, D., Tang, G.Q., Zeng, C., Huang, J.S., & Hong, Y. (2017). Assessing the potential of satellite-based precipitation estimates for flood frequency analysis in ungauged or poorly gauged tributaries of China's Yangtze River basin. Journal of Hydrology, 550, 478-496
[20] Li, D.N., Long, D., Zhao, J.S., Lu, H., & Hong, Y. (2017). Observed changes in flow regimes in the Mekong River basin. Journal of Hydrology, 551, 217-232
[21] Cui, Y.K., *Long, D., Hong, Y., Zeng, C., Zhou, J., Han, Z.Y., Liu, R.H., & Wan, W. (2016). Validation and reconstruction of FY-3B/MWRI soil moisture using an artificial neural network based on reconstructed MODIS optical products over the Tibetan Plateau. Journal of Hydrology, 543, 242-254
[22] Hou, X.Y., *Long, D., Hong, Y., & Xie, H.J. (2016). Seasonal to Interannual Variability of Satellite-Based Precipitation Estimates in the Pacific Ocean Associated with ENSO from 1998 to 2014. Remote Sensing, 8, 18
[23] Tang, G.Q., *Long, D., & Hong, Y. (2016b). Systematic Anomalies Over Inland Water Bodies of High Mountain Asia in TRMM Precipitation Estimates: No Longer a Problem for the GPM Era? Ieee Geoscience and Remote Sensing Letters, 13, 1762-1766
[24] Wan, W., Long, D., Hong, Y., Ma, Y.Z., Yuan, Y., Xiao, P.F., Duan, H.T., Han, Z.Y., & Gu, X.F. (2016). A lake data set for the Tibetan Plateau from the 1960s, 2005, and 2014. Scientific Data, 3, 13
[25] Yang, Y.T., Long, D., Guan, H.D., Liang, W., Simmons, C.T., & Batelaan, O. (2015b). Comparison of three dual-source remote sensing evapotranspiration models during the MUSOEXE-12 campaign: Revisit of model physics. Water Resources Research, 51, 3145-3165
[26] Meng, L., Long, D., Quiring, S.M., & Shen, Y. (2014). Statistical analysis of the relationship between spring soil moisture and summer precipitation in East China. International Journal of Climatology, 34, 1511-1523
[27] Yang, Y., Long, D., Guan, H., Scanlon, B.R., Simmons, C.T., Jiang, L., & Xu, X. (2014a). GRACE satellite observed hydrological controls on interannual and seasonal variability in surface greenness over mainland Australia. Journal of Geophysical Research: Biogeosciences, 119, 2014JG002670
[28] Yang, Y.T., Long, D., & Shang, S.H. (2013). Remote estimation of terrestrial evapotranspiration without using meteorological data. Geophysical Research Letters, 40, 3026-3030
[29] Gao, Y.C., & Long, D. (2008). Intercomparison of remote sensing-based models for estimation of evapotranspiration and accuracy assessment based on SWAT. Hydrological Processes, 22, 4850-4869
[30] Gao, Y.C., Long, D., & Li, Z.L. (2008). Estimation of daily actual evapotranspiration from remotely sensed data under complex terrain over the upper Chao river basin in North China. International Journal of Remote Sensing, 29, 3295-3315
[31] Zheng, H., Hong, Y., Long, D., & Jing, H. (2017). Monitoring surface water quality using social media in the context of citizen science. Hydrology and Earth System Sciences, 21, 949-961
[32] Tang, G., Ma, Y., *Long, D., Zhong, L., & Hong, Y. (2016a). Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales. Journal of Hydrology, 533, 152-167
[33] Ma, Y.Z., Tang, G.Q., *Long, D., Yong, B., Zhong, L.Z., Wan, W., & Hong, Y. (2016). Similarity and Error Intercomparison of the GPM and Its Predecessor-TRMM Multisatellite Precipitation Analysis Using the Best Available Hourly Gauge Network over the Tibetan Plateau. Remote Sensing, 8, 17
[34] Zeng, Z.Y., Tang, G.Q., *Long, D., Zeng, C., Ma, M.H., Hong, Y., Xu, H., & Xu, J. (2016). A cascading flash flood guidance system: development and application in Yunnan Province, China. Natural Hazards, 84, 2071-2093
[35] Tang, G.Q., Zeng, Z.Y., *Long, D., Guo, X.L., Yong, B., Zhang, W.H., & Hong, Y. (2015). Statistical and hydrological comparisons between TRMM and GPM Level-3 products over a mid-latitude basin: Is Day-1 IMERG a good successor for the TMPA 3B42 Version-7 legacy? Journal of Hydrometeorology
[36] Yang, Y., Guan, H., Long, D., Liu, B., Qin, G., Qin, J., & Batelaan, O. (2015a). Estimation of Surface Soil Moisture from Thermal Infrared Remote Sensing Using an Improved Trapezoid Method. Remote Sensing, 7, 8250
[37 ]Scanlon, B.R., Longuevergne, L., & Long, D. (2012). Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resources Research, 48
[38] Tang, G.Q., Wen, Y.X., Gao, J.Y., *Long, D., Ma, Y.Z., Wan, W., & Hong, Y. (2017a). Similarities and differences between three coexisting spaceborne radars in global rainfall and snowfall estimation. Water Resources Research, 53, 3835-3853
[39] Wan, W., Bai, W.H., Zhao, L.M., Long, D., Sun, Y.Q., Meng, X.G., Chen, H., Cui, X.A., & Hong, Y. (2015). Initial results of China's GNSS-R airborne campaign: soil moisture retrievals. Science Bulletin, 60, 964-971
[40] Yang, Y.T., Guan, H.D., Shang, S.H., Long, D., & Simmons, C.T. (2014b). Toward the Use of the MODIS ET Product to Estimate Terrestrial GPP for Nonforest Ecosystems. IEEE Geoscience and Remote Sensing Letters, 11, 1624-1628
[41] Wan, W., Li, H., Xie, H.J., Hong, Y., Long, D., Zhao, L.M., Han, Z.Y., Cui, Y.K., Liu, B.J., Wang, C.G., & Yang, W.T. (2017). A comprehensive data set of lake surface water temperature over the Tibetan Plateau derived from MODIS LST products 2001-2015. Scientific Data, 4, 10
[42] Yang, Y.T., Guan, H., Batelaan, O., McVicar, T.R., Long, D., Piao, S.L., Liang, W., Liu, B., Jin, Z., & Simmons, C.T. (2016). Contrasting responses of water use efficiency to drought across global terrestrial ecosystems. Scientific Reports, 6, 8
[43] Tong, X., Liu, T.X., Singh, V.P., Duan, L.M., & Long, D. (2016). Development of In Situ Experiments for Evaluation of Anisotropic Reflectance Effect on Spectral Mixture Analysis for Vegetation Cover. IEEE Geoscience and Remote Sensing Letters, 13, 636-640
[44] Pei, H.W., Scanlon, B.R., Shen, Y.J., Reedy, R.C., Long, D., & Liu, C.M. (2015). Impacts of varying agricultural intensification on crop yield and groundwater resources: comparison of the North China Plain and US High Plains. Environmental Research Letters, 10, 14
[45] Tang, Y., Hooshyar, M., Zhu, T.J., Ringler, C., Sun, A.Y., Long, D., & Wang, D.B. (2017b). Reconstructing annual groundwater storage changes in a large-scale irrigation region using GRACE data and Budyko model. Journal of Hydrology, 551, 397-406
[46] Scanlon, B.R., Zhang, Z.Z., Save, H., Wiese, D.N., Landerer, F.W., Long, D., Longuevergne, L., & Chen, J. (2016). Global evaluation of new GRACE mascon products for hydrologic applications. Water Resources Research, 52, 9412-9429
[47] Scanlon, B.R., Zhang, Z., Reedy, R.C., Pool, D.R., Save, H., Long, D., Chen, J., Wolock, D.M., Conway, B.D., & Winester, D. (2015). Hydrologic implications of GRACE satellite data in the Colorado River Basin. Water Resources Research, 51, 9891-9903
[48] Liang, W., Yang, Y., Fan, D., Guan, H., Zhang, T., Long, D., Zhou, Y., & Bai, D. (2015b). Analysis of spatial and temporal patterns of net primary production and their climate controls in China from 1982 to 2010. Agricultural and Forest Meteorology, 204, 22-36
[49] Yang, L., Song, X., Zhang, Y., Han, D., Zhang, B., & Long, D. (2012). Characterizing interactions between surface water and groundwater in the Jialu River basin using major ion chemistry and stable isotopes. Hydrology and Earth System Sciences, 16, 4265-4277
[50] Liu, X., Song, X.F., Zhang, Y.H., Xia, J., Zhang, X.C., Yu, J.J., Long, D., Li, F.D., & Zhang, B. (2011). Spatio-temporal variations of delta H-2 and delta O-18 in precipitation and shallow groundwater in the Hilly Loess Region of the Loess Plateau, China. Environmental Earth Sciences, 63, 1105-1118
[51] Liang, W., Bai, D., Wang, F., Fu, B., Yan, J., Wang, S., Yang, Y., Long, D., & Feng, M. (2015a). Quantifying the impacts of climate change and ecological restoration on streamflow changes based on a Budyko hydrological model in China's Loess Plateau. Water Resources Research, 51, 6500-6519